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FR3E-STRE3MLIN3 AND FULL-CONTOUR 160' TURNING 

By Willard R.  Westphal 

SUMMARY 

The flow c h a r a c t e r i s t i c s  of two supersonic-impulse-turbine-blade 
One sect ions designed f o r  a turning angle o f  160° have been s tudied.  

sec t ion  w a s  of the full-contour vortex-flow type having a convex-surface 
design Mach number equal t o  t i e  entering Mach number of 1.77 and a concave- 
surface design Mach number of 0.8. 
surface but a la rge  p a r t  of the convex surface w a s  c u t  away and a f r e e  
streamline was left as t h e  boundary of the f l o w  in the passage. 

The other  sect ion had the same concave 

The full-contour blades had a recovery f a c t o r  of 0.83 a t  an en ter ing  
Mach number of 1.9 and required a variable-geometry tunnel t o  s tar t  super- 
sonic flow i n  the passage. The free-streamline blades had a recovery fac-  
t o r  of 0.73 at. an entering Mach number of 1.7 and s t a r t e d  supersonically 
without an increase i n  Mach number. 

! 

INTRODUCTION 

Turbines driven by high-pressure gases such as supplied by rocket 
f u e l s  are being used t o  furn ish  s h a f t  power f o r  a v a r i e t y  of uses. 
a powerplant has a very low i n s t a l l e d w e i g h t  and, i f  only a s h o r t  oper- 
a t i n g  time i s  required, the t o t a l  weight o f  the powerplant plus  f u e l  w i l l  
be lower t.han t h a t  of other  powerplants. 

Such . 

Since the pressure of the driving gases i s  very high, a high power 
ex t rac t ion  per pound of gas i s  necessary i f  a reasonable e f f ic iency  i s  t o  
be a t ta ined .  Many of the applications require only a f e w  hundred horse- 
power and the gas flow quant i t ies  a re  then so  s m a l l  t h a t  a full-annulus- 
admission turbine would be only a few inches i n  diameter and would operate 
st r o t a t i o n s 1  speeds of over 100,000 rpm. 
e t e r  and t o  reduce the r o t a t i o n a l  speed t o  more p r a c t i c a l  values, such 

In order t o  increase the diam- 
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turbines are usually designed f o r  only partial-annulus admission. 
Partial-admission turbines are inherent ly  less e f f i c i e n t  than f u l l -  
admission ones because of the addi t iona l  losses  associated with the  
turbine r o t o r  blades enter ing and leaving the dr iving gas stream and 
the windage losses  of the blades while out of the stream. Multistage 
partial-admission turbines would presumably be even less e f f i c i e n t  
because of the  necessi ty  of co l lec t ing  the gas stream leaving each 
r o t o r  row. 

I n  order t o  use f u l l  admission i n  some appl icat ions where p a r t i a l  
admission would otherwise be required, a very high i n l e t - a i r  angle i s  
necessary so t h a t  the axial  veloci ty  would be low. 
the design and cascade tests of two supersonic-turbine blade sec t ions  
su i tab le  f o r  such appl icat ions.  The sect ions were designed for a high 
turning angle so t h a t  a high power ex t rac t ion  could be obtained from a 
s ingle  s tage.  

This paper describes 

SYMBOLS 

M Mach number 

P pressure 

R* nondimensional radius i n  vortex f i e l d ,  radius divided by 
radius a t  which M = 1.0  

z spanwise distance from tunnel w a l l  

i n l e t - a i r  angle, angle between enter ing flow and a per-  
pendicular t o  l i n e  of blades 

6 angle of f l o o r  from horizontal  

V supersonic property angle, angle through which flow must 
be turned from M = 1.0 t o  given Mach number 

l o c a l  recovery f a c t o r ,  pt,l/pt,m ‘ 1 2  

‘1s 71 s F i r s t  passage 
sect ion recovery f a c t o r  of f i rs t  passage, 

Subscripts : 

L lower c r  concave surface 
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Blade Convex surface Concave surface 

v bl R* v M  R* sect ion 

I 14 1.57 0.7102 4 1.218 0.8332 
11 27 2.02 0.6137 o 1.000 1.0000 

U upper o r  convex surface 

R*U 
M L  
- 

0.8325 
0.6137 

t stagnation conditions 

2 l o c a l  

m i n i e i  f r e e  s t rezi i  

OF 

Design Conditions 

The i n l e t - a i r  angle p w a s  selected as 80° since t h i s  value w a s  as 
high as w a s  considered prac t icable .  The design of  a nozzle t h a t  would 
provide the high s w i r l  required by a rotor  a t  an i n l e t  angle of 80' would 
require ,modif icat ion t o  methods presently employed t o  use r a d i a l  inflow 
t o  increase the tangent ia l  veloci ty  component between the nozzle and the  
r o t o r .  

The turning angle w a s  then selected as 160° on the basis t h a t  high 
p w e r  ex t rac t ion  and a small pressure change across the r o t o r  (impulse- 
t ; ~ e  rn tn r )  VPPP desirable .  
since an e x i s t i n g  t e s t  sect ion designed f o r  t h i s  Mach number was ava i lab le .  

A n  entering Mach niLmGer of 1.37 was s e d  

De s ign Cons i de ra t i ons 

If it i s  specif ied t h a t  the blade passage has a la rge  enough t h r o a t  
t o  pass the s t a r t i n g  shock wave of a fixed-geurnetry upsti-ea: i i ~ z z l z  zn2 
that t h e  T'Iow is of  he ~ - 1 r k - x  tLype at thc t b s a t ,  r s f e r e m e  1 s h n w g  t . h a t  
f o r  the Mach number chosen e i t h e r  the design values of the convex-surface 
Mach number must be qui te  high o r  the blade loading must be comparatively 
l i g h t .  The low ijlacie loadings would r e s u l t  i n  a flow passage t h a t  i s  
l o n g  i n  comparison with i t s  width and, hence, would have a large wetted 
area per  u n i t  of mass flow. 

Two exmiples of sections t h a t  would j u s t  s tar t  f o r  an enter ing Mach 
number of 1.57, as determined from figure 13 and table  I of reference 1, 
are  shown i n  the following t a b l e :  

. 
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The f irst  example has a convex-surface Mach number equal t o  the en ter ing  
Mach number and the lowest concave-surface Mach number t h a t  w i l l  permit 
the passage t o  start.  
t h a t  of the concave surface which means that the width of the  flow passage 
between blades would be s m a l l  i n  comparison with i t s  length and which 
implies a large wetted area per u n i t  of mass flow. I n  the second example, 
a greater  difference i n  Mach number f o r  the concave and convex surfaces  i s  
chosen which grea t ly  improves the length-width r a t i o  of the flow passage 
but does so  a t  the expense of the r a t h e r  high convex-surface Mach number. 
If the supersonic s t a r t i n g  problem were avoided, it would be possible  t o  
design a blade sec t ion  having both low surface Mach numbers and a more 
favorable length-width r a t i o  of the flow passage. The s t a r t i n g  problem 
i s ,  of course, a very real one f o r  a fixed-geometry cascade tunnel and 
f o r  the turbine of a gas-turbine powerplant. For turbines  driven by an 
independent source of high-pressure gas, however, it seem l i k e l y  t h a t  
some blade configurations that do not  s tar t  i n  a cascade tunnel would be 
acceptable s ince the inlet-air  angle normally var ies  i n  the proper manner 
t o  a s s i s t  s t a r t i n g .  If the flow i n  the r o t o r  passage i s  not supersonic, 
the torque developed w i l l  be low and, hence, the r o t a t i o n a l  speed w i l l  be 
lower than designed and w i l l  r e s u l t  i n  a higher r o t o r  i n l e t - a i r  angle 
which i n  t u r n  w i l l  reduce the width of the stream tube enter ing each 
blade passage and, hence, w i l l  assist s t a r t i n g .  

The convex-surface radius i s  not  much less than 

One of the two blade sect ions described i n  t h i s  paper w a s  designed 
t o  obtain desirable  blade configurations and surface Mach numbers a t  the 
design condition, and the s t a r t i n g  problem w a s  avoided by the use of a 
simple variable-geometry test sect ion.  The second sec t ion  a l s o  has low 
blade-surface Mach numbers and the s t a r t i n g  problem w a s  avoided by el imi-  
nating the contracting throa t  usually required by conventional supersonic 
blading, The question of the s t a r t i n g  behavior of a r o t o r  using e i t h e r  
o f  these sections has not been invest igated.  

Full-Contour Blade Section 

The f i r s t  blade sect ion,  shown i n  f igure  1, w a s  designed t o  have 
concentric a rcs  f o r  the grea te r  p a r t  of the concave and convex surfaces  
o f  adjacent blades.  The design convex-surface Mach number w a s  equal t o  
the entering Mach number of 1.57 and the design concave-surface Mach 
number w a s  0.8. 
Whole convex surface were l a i d  out  by the c h a r a c t e r i s t i c  method described 
i n  reference 1. The c i r c u l a r  port ion of the subsonic concave surface w a s  
eas i ly  determined s ince vortex flow w a s  assumed and the surface Mach num- 
ber was spec i f ied .  These conditions a l s o  determine the enter ing mass flow 
and,  hence, the width of the enter ing stream tube. The transonic port ion 
Letween the sonic point and the c i r c u l a r  port ion w a s  a r b i t r a r i l y  drawn as 
it srmothly f a i r e d  l i n e .  
incorporate a wedge angle of 8' without changing the concave surface 

The supersonic port ion of the concave surface and the  

The leading and t r a i l i n g  edges were modified t o  



contour ( ref .  1). 
start a t  a Mach number of 1.57. 

It should be noted that  t h i s  blade sec t ion  cannot 

Free-Streamline Blade Section 

A l l  of the  convex surface of the blades i n  f igure  1 except the 
leading-edge and trail ing-edge wedges has the same l o c a l  Mach nun-ber a t  
design conditions.  The pressure i s ,  therefore,  the same over the s u r -  
face and the ofily force exerted on it i s  t h a t  due t o  skin f r i c t i o n .  It 
appears, therefore ,  t h a t  much of t h i s  surface could be removed without 
g r e a t l y  changing the flow pa t te rn .  The convex-surface Mach number w a s ,  
i n  f a c t ,  made eqml  t o  the q s t r e a ~ ~  Xach number fsr t M s  pli-nse. -I/- The 
free-streamline blade sect ion shown i n  figure 2 i s  the same as t h a t  of 
f igure  1 except f o r  the removal of p a r t  o f  the  convex surface which, 
thereby, reduces the blade wetted surface and e s s e n t i a l l y  eliminates t h e  
t h r o a t  contract ion.  The decrease i n  losses due t o  sk in  f r i c t i o n  i s  
counteracted by the addi t ional  losses due t o  the turbulence a t  the  free- 
stream boundary. If the air  i n  the  space formerly occupied by the blade 
were more or  less s ta t ionary  o r  i f  it were being cont inual ly  c a r r i e d  
downstream and replaced, it i s  qui te  apparent t h a t  the free-streamline 
blades would have grea te r  losses  than the ful l -contour  blades because of 
the l a r g e r  sca le  turbulence a t  the free-streamline in te r face  than a t  the  
blade surface.  However, s ince the a i r  is  confined t o  a space t h a t  i s  

f l o w  bubble of a conventional a i r f o i l ,  it should be able t o  r o t a t e  as a 
vortex and, thereby, grea t ly  reduce the  difference i n  ve loc i ty  across  the 
f r e e  streamline.  The per ipheral  velocity of the vortex i s  such t h a t  the 
energy l o s t  by the vortex due t o  skin f r i c t i o n  along surface AB i s  t r a n s -  
ferred from the main stream flow to the  vortex flow alorig the f r e e  stream- 
l i n e .  For these very high turning angles, the length of boundary AB i s  
s m a l l  r e l a t i v e  t o  the length of the wetted surface t h a t  w a s  removed. 
Hence, It w a s  considered possible t h a t  the free-s t reai i l lne blades might 
show lower losses  than the full-contour blades. Besides avoiding the 
supersonic s t a r t i n g  problem and reducing the wetted-surface a rea ,  the 
free-streamline blades have these other  possible advantages over conven- 
t i o n a l  ful l -contour  blades: 

rleaL-ly- at least as coiiiljai-ed with the LisLisl s h q e  of  a separated 

1. The e f f e c t  of back pressure on torque would be qui te  d i f f e r e n t  f o r  
a turbine having free-streamline blading s ince the s t a t i c  pressure i s  prop- 
agated upstream through the ro tor  even though the v e l o c i t i e s  r e l a t i v e  t o  
the r o t o r  a r e  supersonic. This e f f e c t  may o r  may not be advantageous, 
depending on the appl icat ion.  

2. Since the wetted surface available f o r  heat  t r a n s f e r  t o  the blade 
i s  l e s s ,  blade cooling should be easier. 

C ONFI D E N T I L  
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3. The blade taper  from root  t o  t i p  of a r o t o r  blade could be 
dictated 1a;gely by mechanical considerations s ince the loca t ion  of the 
solid-blade boundary t o  the free streamline i s  not c r i t i c a l .  

APPARATUS AND PROCEDURE I 

I n  order t o  evaluate the r e l a t i v e  performance of these two blade 
sections,  an ex is t ing  2-inch by 3-inch blowdown-jet test  sec t ion  loca ted  
i n  the Gas Dynamics Branch of the Langley Aeronautical Laboratory w a s  
used s ince t h e i r  turning angle w a s  too g r e a t  t o  be accommodated i n  the  
Langley 6-inch by 10-inch supersonic cascade tunnel. The t e s t  sec t ion  
had no provision f o r  boundary-layer bleedoff and turning-angle measure- 
ments b u t  w a s  considered adequate f o r  determining the recovery f a c t o r  of 
the two blade sect ions.  
schlieren system adjusted f o r  low s e n s i t i v i t y  s o  t h a t  the p ic tures  a r e  
e s s e n t i a l l y  shadowgraphs . 

The wave pa t te rns  were a l s o  observed by a 

Figure 3 i s  a sketch o f  the t e s t  sec t ion  w i t h  one side w a l l  removed 
and the full-contour blades i n s t a l l e d .  The angle of the lower f l o o r  w a s  
adjustable from horizontal  t o  18O open so  that the Mach number enter ing 
the blade row could be increased f o r  s t a r t i n g  the full-contour blades.  
The floor angle w a s  s e t  a t  18O p r i o r  t o  tunnel operation and w a s  reduced 
t o  the minimum s e t t i n g  a t  which e i t h e r  one or two passages were observed 
t o  remain s t a r t e d .  The rake w a s  movable both spanwise and streamwise, 
but  a l l  the  data presented were taken with it i n  the streamwise p o s i t i o n  
shown. Spanwise surveys of one-half of the  passage were made a t  two f l o o r  
angles f o r  each blade sect ion.  The two s t a t i c  tubes were 1/2 inch away 
spanwise from the l i n e  of total-pressure tubes. 
a t  the same streamwise s t a t i o n  as the total-pressure o r i f i c e s .  

The s t a t i c  o r i f i c e s  were 

This t e s t  sect ion d i d  not c lose ly  simulate an i n f i n i t e  cascade. The 
lower f l o o r  w a s  always from 2' t o  go open and the expansion waves from 
the f l o o r  hinge l i n e  and t h e i r  r e f l e c t i o n s  produced an appreciable Mach 
number gradient i n  the enter ing flow. 
were found from the inc l ina t ions  of the Mach l i n e  near the entrance t o  
the f i r s t  passage and are thought t o  be accurate t o  t O . 0 5 .  
fac tors  reported are from area  weighted averages of the t o t a l  pressure 
measured by a rake i n  the f i r s t  passage. The Mach number ahead of t h e  
total-pressure tube w a s  determined by assuming the static tubes measured 
s t a t i c  pressure ahead of the bow wave of the total-pressure tubes. The 
rake 's  total-pressure readings were corrected f o r  the  normal shock l o s s  
by use of t h i s  Mach number. 

The enter ing Mach numbers reported 
I 

I 
The recovery 

The enter ing t o t a l  pressure w a s  approximately 5 atmospheres f o r  a l l  
t e s t s  reported. The discharge pressure w a s  atmospheric. Preliminary 
t e s t s  showed that there  w a s  no f u r t h e r  change i n  flow p a t t e r n  upstream of 
the rake as pressure r a t i o  w a s  increased. 
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The settling-chamber pressure w a s  measured by a ca l ibra ted  Bourdon 
type gage. 
manometer boards. 

Other pressures were recorded by photographing mercury f i l l e d  

RESULTS AND DISCUSSION 

Full-Contour Blades 

Figure 4 i s  a schl ieren photograph o f  the  full-contour blades a t  a 
This i s  the lowes t  f l o o r  angle a t  which both v i s -  floor angle of 8.4O.  

i b l e  passages are s t a r t e d .  
passage i s  about 2.0. 

The Mach number a t  the entrance of the f irst  

This cascade could not  operate a t  the design enter ing Mach number 
of 1.57 because the  design incorporated no allowances f o r  boundary-layer 
e f f e c t s .  These blade sections are par t icu lar ly  inf lex ib le  as far as 
being able  t o  ad jus t  t h e i r  flow p a t t e r n  f o r  even small e r r o r s  i n  
boundary-layer allowance because the passage i s  very near ly  choked when 
operating a t  the intended design condition. The sonic l i n e  i s  qui te  
c lose t o  the  mean radius of the passage and, as pointed out i n  r e f e r -  
ence 1, t h i s  i s  approximately the flow condition f o r  m a x i m u m  possible  
ma53 f l o v .  
faces ,  but not necessar i ly  capable of s ta r t ing ,  would be able t o  operate 
c loser  t o  o r  a t  the design enter ing Mach number even i f  the boundary- 
layer  allowance were too small. 
flow i s  es tab l i shed  i n  the blade passage by varying the enter ing Mach nun- 
bcr i n  some mnner .  

Sec t ionE  desigmc? fsr sq?ersen ic  X2Ch IllL-m-herS nll  b t . h  SlX-- 

This, of course, assumes that supersonic 

The oblique shock on the concave side of the leading edge ( f i g .  4) 
uppLuA to cause rlow separatior, where it i m n i  --r --0 r1n-q - - LIE CI-iIIVeX sl.cr.Tace, 
This shock wave i s  of  f i n i t e  s t rength  because of the expansion from the 
f l o o r  hinge l i n e .  Some of the ref lect ions of these waves f a l l  behind the 
leading edge; hence, the l o c a l  incidence angle of the concave s i d e  of the 
leading edge i s  s l i g h t l y  pos i t ive  instead of zero. This separat ion prob- 
ably contr ibutes  a considerable p a r t  of the losses  and a l s o  f u r t h e r  
decreases the e f fec t ive  throa t  area.  

._ I ,  
0 mI\P 0 vc1 

The sec t ion  recovery f a c t o r s  are obtained by mechanical in tegra t ion  
of the f i r s t  passages of the curves of figure 5 and a r e  p l o t t e d  i n  f i g -  
ure 6. 
mixing loss or a l l  of the f r i c t i o n  loss o f  the f i r s t  blades s ince the  
rake i s  not  downstream of the whole passage ( f i g .  3) .  
recovery f a c t o r  i s  found t o  be 0.75 by integrat ing f igure  6. 

Note that these sect ion recovery f a c t o r s  do not include the  

The passage 

n - e  Mach nilmher at the entzance to  the first passage decreased only 
s l i g h t l y  t o  about 1.9 as the f l o o r  angle w a s  lowered t o  5.2'. Figure 7 
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i s  a sch l ie ren  photograph at  t h i s  f l o o r  angle and f igures  8 and 6 show 
the  recovery f ac to r s .  
sage w a s  supersonic. 
second passage. 
of the lower mixing losses with the flow of the  second passage. 

This w a s  the lowest angle a t  which the  first pas- 
There w a s  a detached shock a t  the  entrance of t he  

The recovery f ac to r  increased t o  0.83 perhaps because 

Free -Streamline Blades 

The cascade of free-streamline blades did not  requi re  an increase 
The flow p a t t e r n  w a s  the  same regard less  i n  floor angle f o r  s t a r t i n g .  

of whether the  operating condition w a s  approached by opening or c los ing  
the f l o o r ,  

Figure 9 i s  a sch l ie ren  photograph of the  free-streamline blades a t  
a f loor  angle of 5.2' and an en ter ing  Mach number of about 1.9. 
a re  the  conditions a t  which the ful l -contour  blades had the  highest  
recovery f ac to r ,  within t h e i r  range of operation. 

These 

The free-streamline blades appear t o  have a l a r g e r  boundary l aye r  
on the blade surface after the  flow has reat tached than the  ful l -contour  
blades had on the  same surface.  Figure 10 when compared with f igu re  8 
shows t h a t  the l o c a l  recovery f a c t o r  i s  less than t h a t  f o r  t he  full-  
contour blades and t h a t  the secondary flow e f f e c t s  are much less (flow 
more near ly  two-dimensional spanwise) o r  are masked by the turbulence 
and mixing a t  the  boundary of  the  vortex. The passage recovery f a c t o r  
from f i g u r e  11 is  0.68 or 0.15 lower than t h a t  of the  ful l -contour  blades.  

Figure 12 i s  a sch l ie ren  photograph of t he  free-streamline blades a t  

The f l o w  pa t t e rn  i s  similar t o  t h a t  a t  a f l o o r  angle of 5.2' 
a floor angle of 2.3O which i s  the  lowest angle a t  which the  flow w a s  
supersonic. 
and f igu re  13 shows the sec t ion  recovery f ac to r s  t o  be s l i g h t l y  higher.  
The passage recovery f a c t o r  from f igu re  11 i s  0.73. 

Comparison of Performance 

The performance data  of t he  two blade sec t ions  are summarized i n  the  
following t ab le :  

Full-contour blades Free-streamline blades 

Floor angle 8.4 5 - 2  5 - 2  2.3 
Entering Mach number 2.0 1.9 1.9 1 - 7  
Recovery f ac to r  0.75 0.83 0.68 0 -73 A 
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The only other  known performance data f o r  blade sect ions having 
turning angles comparable t o  these are presented i n  reference 1. The 
recovery fac tors  of four d i f f e r e n t  blade sect ions designed f o r  a turning 
angle of 120° were a l l  about 0.88 a t  an enter ing Mach number of 1.57. 

Two ways t o  improve the performance of these full-contour blades 
a r e  apparent. 
permit the blades t o  operate a t  a lower Mach number. 
of the  shock wave spanning the passage entrance by properly matching 
tilt: elitei-iiig Mach nun’oer of the blades f o r  b e s t  perfomiance and the 
wave-free Mach number of the tunnel would probably reduce the separat ion 
and the losses .  These changes should improve the blades’ performance 
b u t  t‘ne magnitude of  the improvement is ,  of cour‘se, urknown. 

Incorporating a sui table  boundary-layer allowance would 
A l s o ,  e l iminat ion 

The data  f o r  the f r e e - s t r e d i n e  blades do not suggest any obvious 
change t h a t  would improve t h e i r  performance. Their performance should 
u e  compared with t h a t  of a blade section t h a t  would t u r n  the flow 1600 
and s ta r t  supersonically a t  the design Mach number and angle. N o  such 
data a r e  avai lable .  The recovery factor  of these first free-streamline 
blades i s  low (0.73) but t h e i r  other  advantages may make them s u i t a b l e  
f o r  some appl icat ions.  

CONCLUSIONS 

Two impulse-type turbine blade sections designed for high power 
ex t rac t ion  and r e l a t i v e l y  low a x i a l  i n l e t  Mach number are described. 
Both sect ions were designed f o r  an i n l e t - a i r  angle of 80° and a r e l a t i v e  
i n l e t  Mach number of 1.57. 

The full-contour blades,, which required a var iable  Mach number 
nozzle for supersonic s t a r t i n g ,  could not operate below an enter ing Mach 
nmber of  i.9 because o f  a lack of boluidary-layer growth aiiowarice. For 
t h i s  condition, a passage pressure recovery of 0.83 w a s  measured. 
data suggest two possible improvements i n  the design t o  permit operation 
a t  design i n l e t  Mach numbers. The free-streamline blades,  which eliminate 
the s t a r t i n g  problem, although capable of operation a t  lower Mach number 
than the full-contour blade, exhibited poorer performance. A pressure 
recovery of 0.73 w a s  measured a t  an inlet  Mach number of 1.7. 

The 

Langley Aeronautical Laboratory, 
Nstional Advisory Committee for Aeronautics, 

Langley Field,  V a . ,  June 6, 1957. 
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Figure 5 . -  Local recovery f ac to r  for full-contour blades at a f l o o r  angle 
of 8.4O. Both v i s i b l e  passages started. 
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Figure 8.- Local recovery fac tor  f o r  full-contour blades a t  a f loor  angle 
of 5.20. O n l y  first passage s t a r t e d .  
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Figure 10.- Local recovery factor for free-streamline blades at a floor 
angle of 5 . 2 O .  
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Figure 13. -  Local recovery factor for free-streamline blade at a floor 
angle of 2 . 3 O .  
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